试题
题目:
如图,已知∠ACB=90°,∠DAB=70°,AC平分∠DAB,∠1=35°.
①求∠B的度数;
②求证:AB∥CD.
答案
①解:∵∠DAB=70°,AC平分∠DAB,
∴∠2=
1
2
∠DAB=
1
2
×70°=35°,
∵∠ACB=90°,
∴∠B=90°-∠2=90°-35°=55°;
②证明:∵∠1=35°,∠2=35°,
∴∠1=∠2,
∴AB∥CD.
①解:∵∠DAB=70°,AC平分∠DAB,
∴∠2=
1
2
∠DAB=
1
2
×70°=35°,
∵∠ACB=90°,
∴∠B=90°-∠2=90°-35°=55°;
②证明:∵∠1=35°,∠2=35°,
∴∠1=∠2,
∴AB∥CD.
考点梳理
考点
分析
点评
平行线的判定;角平分线的定义;直角三角形的性质.
①根据角平分线的定义求出∠2,再根据直角三角形两锐角互余求解即可;
②根据内错角相等,两直线平行判定即可.
本题考查了平行线的判定,角平分线的定义,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
找相似题
(2013·内江)把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )
(2013·长春)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为( )
(2012·崇左)如图所示,直线a∥b,△ABC是直角三角形,∠A=90°,∠ABF=25°,则∠ACE等于( )
(2005·广州)如图,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有( )
(2002·乌鲁木齐)如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有( )