试题
题目:
如图,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于点E,过E作ED⊥AB于D点,当∠A=_____时,ED恰为AB的中垂线( )
A.10°
B.15°
C.30°
D.45°
答案
C
解:当∠A=30°时,ED恰为AB的中垂线,理由是:
∵∠A=30°,∠C=90°,
∴∠CBA=60°,
∴∠EBA=∠EBC=
1
2
∠CBA=
1
2
×60°=30°,
∴ED⊥AB,
∴∠A=∠EBA,
∴EA=EB,
∵ED⊥AB,
∴ED平分AB,
∴ED恰为AB的中垂线.
故选C.
考点梳理
考点
分析
点评
专题
线段垂直平分线的性质;三角形内角和定理;直角三角形的性质.
在Rt△ABC中结合已知条件分析,要使D为AB的中点,则三角形ABE应是等腰三角形即可.
本题主要考查等腰三角形的基本性质;得到三角形ABE应是等腰三角形是正确解答本题的关键.
计算题.
找相似题
(2013·内江)把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )
(2013·长春)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为( )
(2012·崇左)如图所示,直线a∥b,△ABC是直角三角形,∠A=90°,∠ABF=25°,则∠ACE等于( )
(2005·广州)如图,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有( )
(2002·乌鲁木齐)如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有( )