试题
题目:
在直角三角形ABC中,∠CAB=90°,∠ABC=72°,AD是∠CAB的角平分线,交边BC于点D,过点C作△ACD中AD边上的高线CE,则∠ECD的度数为( )
A.63°
B.45°
C.27°
D.18°
答案
C
解:∵∠CAB=90°,AD是∠CAB的角平分线,
∴∠CAD=
1
2
×90°=45°,
∵CE⊥AD,
∴∠ACE=90°-45°=45°,
又∵∠CAB=90°,∠ABC=72°,
∴∠ACB=90°-72°=18°,
∴∠ECD=∠ACE-∠ACB=45°-18°=27°.
故选C.
考点梳理
考点
分析
点评
直角三角形的性质.
先根据角平分线的定义求出∠CAD=45°,再根据直角三角形两锐角互余求出∠ACB和∠ACE,然后根据∠ECD=∠ACE-∠ACB代入数据进行计算即可得解.
本题主要考查了直角三角形两锐角互余的性质,熟记性质并准确识图是解题的关键.
找相似题
(2013·内江)把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )
(2013·长春)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为( )
(2012·崇左)如图所示,直线a∥b,△ABC是直角三角形,∠A=90°,∠ABF=25°,则∠ACE等于( )
(2005·广州)如图,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有( )
(2002·乌鲁木齐)如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有( )