试题

题目:
青果学院路边路灯的灯柱BC垂直于地面,灯杆BA的长为2m,灯杆与灯柱BC成120度角,锥形灯罩轴线AD与灯杆AB垂直,且灯罩轴线AD正过道路路面的中心线(D在中心线上),已经点C与D点之间的距离为12m,则BC的高(  )m.



答案
A
青果学院解:设灯柱BC的长为h米,作AH⊥CD于点H,作BE⊥AH于点E.
∴四边形BCHE为矩形.
∵∠ABC=120°,
∴∠ABE=30°.
又∵∠BAD=∠BCD=90°,
∴∠ADC=60°.
在Rt△AEB中,
∴AE=ABsin30°=1,
BE=ABcos30°=
3

∴CH=
3

又∵CD=12,
∴DH=12-
3

在Rt△AHD中,tan∠ADH=
AH
HD
=
h+1
12-
3
=
3

解得,h=12
3
-4.
故选A.
考点梳理
解直角三角形的应用.
设灯柱BC的长为h米,过点A作AH⊥CD于点H,过点B作BE⊥AH于点E,构造出矩形BCHE,Rt△AEB,然后解直角三角形求解.
本题考查了解直角三角形的应用,解答此题的关键是作出辅助线,构造直角三角形,将求灯柱高的问题转化为解直角三角形的问题解答.
找相似题