试题
题目:
在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为( )
A.9米
B.28米
C.
(7+
3
)
米
D.
(14+2
3
)
米
答案
D
解:如图,延长AD交BC的延长线于点F,过点D作DE⊥BC的延长线于点E.
∵∠DCE=30°,CD=8米,
∴CE=CD·cos∠DCE=8×
3
2
=4
3
(米),
∴DE=4米,
设AB=x,EF=y,
∵DE⊥BF,AB⊥BF,
∴△DEF∽△ABF,
∴
DE
AB
=
EF
BF
,即
4
x
=
y
20+4
3
…①,
∵1米杆的影长为2米,根据同一时间物高与影长成正比可得,
1
2
=
x
20+4
3
+y
…②,
①②联立,解得x=14+2
3
(米).
故选:D.
考点梳理
考点
分析
点评
相似三角形的应用;解直角三角形的应用.
构造相应的直角三角形,利用勾股定理及影长与实物比求解.
此题主要考查了解直角三角形以及相似三角形的应用以及学生对坡角及坡度问题的掌握情况,得出EF的长是解题关键.
找相似题
(2012·舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )米.
(2012·宜昌)在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为( )
(2012·襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为( )
(2012·德州)为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有( )
(2009·营口)一架5米长的梯子斜靠在墙上,测得它与地面的夹角为40°,则梯子底端到墙角的距离为( )