试题
题目:
如图,两条宽度均为a的公路相交成α角,这两条公路在相交处的公共部分的面积是( )
A.
a
2
sinα
B.
a
2
cosα
C.a
2
sinα
D.a
2
cosα
答案
A
解:如图,α的对边AC即为路宽a,
即sinα=
a
斜边
,
即斜边=
a
sinα
,
∴路面面积=a×
a
sinα
=
a
2
sinα
.
故选A.
考点梳理
考点
分析
点评
解直角三角形的应用;菱形的判定与性质.
依题意四边形为菱形,α的对边AC即为菱形的高,等于40米,菱形边长可利用正弦解出,得出高和底,运用面积公式可解.
本题考查了解直角三角形的应用.因为两条宽度均为a的公路相交,将形成一个高为a的菱形,所以借助正弦可求出菱形的边长,从而求出面积.
找相似题
(2012·舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )米.
(2012·宜昌)在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为( )
(2012·襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为( )
(2012·德州)为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有( )
(2009·营口)一架5米长的梯子斜靠在墙上,测得它与地面的夹角为40°,则梯子底端到墙角的距离为( )