试题
题目:
(2006·佛山)如图,矩形草坪ABCD中,AD=10m,AB=10
3
m.现需要修一条由两个扇环构成的便道HEFG,扇环的圆心分别是B、D.若便道的宽为1m,则这条便道的面积大约是( )(精确到0.1m
2
)
A.9.5m
2
B.10.0m
2
C.10.5m
2
D.11.0m
2
答案
C
解:∵四边形ABCD为矩形,
∴△ADB为直角三角形,
又∵AD=10,AB=10
3
,
∴BD=
AD
2
+
AB
2
=20,
又∵cos∠ADB=
AD
BD
=
1
2
,
∴∠ADB=60°.
又矩形对角线互相平分且相等,便道的宽为1m,
所以每个扇环都是圆心角为30°,且外环半径为10.5,内环半径为9.5.
∴每个扇环的面积为
30×
10.5
2
π
360
-
30×
9.5
2
π
360
=
5π
3
.
∴当π取3.14时整条便道面积为
5π
3
×2
=10.4666≈10.5m
2
.
便道面积约为10.5m
2
.
故选C.
考点梳理
考点
分析
点评
专题
解直角三角形的应用;扇形面积的计算.
由四边形ABCD为矩形得到△ADB为直角三角形,又∵AD=10,AB=10
3
,由此利用勾股定理求出BD=20,又∵cos∠ADB=
AD
DB
=
1
2
,∴∠ADB=60°,又矩形对角线互相平分且相等,便道的宽为1m,所以每个扇环都是圆心角为30°且外环半径为10.5,内环半径为9.5.这样可以求出每个扇环的面积.
此题考查内容比较多,有勾股定理、三角函数、扇形面积,做题的关键是把实际问题转化为数学问题.
压轴题.
找相似题
(2012·舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )米.
(2012·宜昌)在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为( )
(2012·襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为( )
(2012·德州)为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有( )
(2009·营口)一架5米长的梯子斜靠在墙上,测得它与地面的夹角为40°,则梯子底端到墙角的距离为( )