试题
题目:
(2013·沙湾区模拟)有三张卡片(背面完全相同)分别写有
2
3
,-2,3,把它们背面朝上洗匀后,小军从中抽取一张,记下这个数后放回洗匀,小明又从中抽出一张.
(1)小军抽取的卡片是
2
3
的概率是
1
3
1
3
;两人抽取的卡片都是3的概率是
1
9
1
9
.
(2)李刚为他们俩设计了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小军获胜,否则小明获胜.你认为这个游戏规则对谁有利?请用列表法或树状图进行分析说明.
答案
1
3
1
9
解:(1)共有3张卡片,2
3
的只有1张,所以概率是
1
3
;每一次抽都有3种可能,那么两次共有9种可能,两人抽取的卡片都是3的只有1种情况,所以概率是
1
9
;
(2)由表可以看出:出现有理数的次数为5次,
小明
小军
2
-2
3
2
有理数
无理数
无理数
-2
无理数
有理数
有理数
3
无理数
有理数
有理数
出现无理数的次数为4次,所以小军获胜的概率为
5
9
>小明的
4
9
.
此游戏规则对小军有利.
考点梳理
考点
分析
点评
游戏公平性;有理数.
(1)抽取的卡片是
2
3
的概率让张数1除以总张数3即可;找到所有情况,看两张卡片上的数字均为3的情况占所有情况的多少即可;
(2)列举出所有情况,看两张卡片上的数字之积为有理数的情况占所有情况的多少得到小军获胜的概率;进而得到小明获胜的概率,比较即可.
解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
找相似题
小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是( )
(2007·眉山)如图,将两个可以自由转动的转盘分别分成面积相等的几个扇形,在分成的扇形上分别标上数字1,2,3,4,5.同时转动两个转盘.
(1)用树状图或列表法表示转盘停止后指针所指扇形上的数字可能出现的所有结果(若指针指在分界线上,则重转);
(2)如果甲、乙两人分别同时转动两个转盘,并规定:转盘停止后,若两转盘指
针所指扇形上的数字之和为偶数,则甲胜;若数字之和为奇数,则乙胜.这个游戏对甲、乙两人公平吗?请说明理由.
(2007·江苏)小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A棋1只,B棋2只,C棋3只,D棋4只.
“字母棋”的游戏规则为:
①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;
②A棋胜B棋、C棋;B棋胜C棋、D棋;C棋胜D棋;D棋胜A棋;
③相同棋子不分胜负.
(1)若小玲先摸,问小玲摸到C棋的概率是多少?
(2)已知小玲先摸到了C棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?
(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?
(2007·呼伦贝尔)有两个可以自由转动的均匀转盘A、B,分别被分成4等份、3等份,并在每份内均标有数字,如图所示,丁洋和王倩同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A和B;②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针
指向某一份为止);③如果和为0,丁洋获胜,否则,王倩获胜.
(1)用列表法(或树状图)求丁洋获胜的概率;
(2)你认为这个游戏对双方公平吗?请说明理由.
(2007·赤峰)有两个可以自由转动的均匀转盘A,B都被分成了3等份,并在每一份内均标有数字,如图所示,规则如下:
①分别转动转盘;
②两个转盘停止后观察两个指针所指份内的数字(若指针停在等份线上,那么重转一次,直到指针指向某一份内为止).
(1)用列表法(或树状图)分别求出“两个指针所指的数字都是方程x
2
-5x+6=0的解”的概率和“两个指针所指的数字都不是方程x
2
-5x+6=0的解”的概率;
(2)王磊和张浩想用这两个转盘作游戏,他们规定:若“两个指针所指的数字都是x
2
-5x+6=0的解”时,王磊得1分;若“两个指针所指的数字都不是x
2
-5x+6=0的解”时,张浩得3分,这个游戏公平吗?若认为不公平,请修改得分规定,使游戏对双方公平.