试题
题目:
(2006·惠安县质检)甲、乙两人在玩摸球游戏,现口袋中装有大小相同的2个红球和1个白球,搅匀后从中摸出第一个球,放回后搅匀再摸出第二个球.
(1)写出上述一个可能事件;
(2)现把游戏规则规定如下:摸到红球的为甲胜,摸到一红一白的为乙胜,请用树状图或列表法分析说明这个游戏对甲乙双方是否公平?
答案
解:(1)一个可能事件:两个红球或一红一白或两个白球均可;
(2)
P(两个红球)=
4
9
;P(一红一白)=
4
9
,概率相同,那么游戏公平.
解:(1)一个可能事件:两个红球或一红一白或两个白球均可;
(2)
P(两个红球)=
4
9
;P(一红一白)=
4
9
,概率相同,那么游戏公平.
考点梳理
考点
分析
点评
专题
列表法与树状图法;随机事件;游戏公平性.
(1)根据可能事件的概念写出即可;
(2)根据概率公式解决即可.
主要考查了可能事件,和概率的求算方法.解决本题需要正确理解随机事件的概念并会画出树状图进行解题.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.用到的知识点为:概率=所求情况数与总情况数之比.
开放型.
找相似题
小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是( )
(2007·眉山)如图,将两个可以自由转动的转盘分别分成面积相等的几个扇形,在分成的扇形上分别标上数字1,2,3,4,5.同时转动两个转盘.
(1)用树状图或列表法表示转盘停止后指针所指扇形上的数字可能出现的所有结果(若指针指在分界线上,则重转);
(2)如果甲、乙两人分别同时转动两个转盘,并规定:转盘停止后,若两转盘指
针所指扇形上的数字之和为偶数,则甲胜;若数字之和为奇数,则乙胜.这个游戏对甲、乙两人公平吗?请说明理由.
(2007·江苏)小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A棋1只,B棋2只,C棋3只,D棋4只.
“字母棋”的游戏规则为:
①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;
②A棋胜B棋、C棋;B棋胜C棋、D棋;C棋胜D棋;D棋胜A棋;
③相同棋子不分胜负.
(1)若小玲先摸,问小玲摸到C棋的概率是多少?
(2)已知小玲先摸到了C棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?
(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?
(2007·呼伦贝尔)有两个可以自由转动的均匀转盘A、B,分别被分成4等份、3等份,并在每份内均标有数字,如图所示,丁洋和王倩同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A和B;②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针
指向某一份为止);③如果和为0,丁洋获胜,否则,王倩获胜.
(1)用列表法(或树状图)求丁洋获胜的概率;
(2)你认为这个游戏对双方公平吗?请说明理由.
(2007·赤峰)有两个可以自由转动的均匀转盘A,B都被分成了3等份,并在每一份内均标有数字,如图所示,规则如下:
①分别转动转盘;
②两个转盘停止后观察两个指针所指份内的数字(若指针停在等份线上,那么重转一次,直到指针指向某一份内为止).
(1)用列表法(或树状图)分别求出“两个指针所指的数字都是方程x
2
-5x+6=0的解”的概率和“两个指针所指的数字都不是方程x
2
-5x+6=0的解”的概率;
(2)王磊和张浩想用这两个转盘作游戏,他们规定:若“两个指针所指的数字都是x
2
-5x+6=0的解”时,王磊得1分;若“两个指针所指的数字都不是x
2
-5x+6=0的解”时,张浩得3分,这个游戏公平吗?若认为不公平,请修改得分规定,使游戏对双方公平.