试题
题目:
在一个不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个,蓝球1个.若从中任意摸出一个球,它是蓝球的概率为
1
4
.
(1)求袋中黄球的个数;
(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是红色与黄色这种组合(不考虑红、黄球顺序)的概率.
答案
解:(1)设袋中的黄球个数为x个,
∴
1
2+1+x
=
1
4
,
解得:x=1,
经检验,x=1是原方程的解,
∴袋中黄球的个数1个;
(2)画树状图得:
,
∴一共有12种情况,
两次摸到球的颜色是红色与黄色这种组合的有4种,
∴两次摸到球的颜色是红色与黄色这种组合的概率为:
4
12
=
1
3
.
解:(1)设袋中的黄球个数为x个,
∴
1
2+1+x
=
1
4
,
解得:x=1,
经检验,x=1是原方程的解,
∴袋中黄球的个数1个;
(2)画树状图得:
,
∴一共有12种情况,
两次摸到球的颜色是红色与黄色这种组合的有4种,
∴两次摸到球的颜色是红色与黄色这种组合的概率为:
4
12
=
1
3
.
考点梳理
考点
分析
点评
列表法与树状图法.
(1)首先设袋中的黄球个数为x个,然后根据古典概率的知识列方程,求解即可求得答案;
(2)首先画树状图,然后求得全部情况的总数与符合条件的情况数目,求其二者的比值即可.
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意方程思想的应用.
找相似题
(2013·泰安)有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为( )
(2013·绵阳)“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )
(2013·龙岩)若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则不重复的3个数字组成的三位数中是“凸数”的概率是( )
(2012·舟山)定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V数”的概率是( )
(2012·玉林)一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x
2
+px+q=0有实数根的概率是( )