试题
题目:
梯形中位线长10,一对角线把它分成2:3,则梯形较长的底边为
12
12
.
答案
12
解:如图,EF为梯形的中位线,被AC分成的两部分的长为2:3,
∵EF=10
∴EG=10×
2
5
=4,
∴GF=10-4=6
∴AB=2×6=12
故答案为:12.
考点梳理
考点
分析
点评
梯形中位线定理;三角形中位线定理.
首先利用对角线将中位线分成的两部分的比和中位线的长求得GF的长,利用三角形的中位线定理求得梯形的较长的边的长即可.
本题考查了梯形的中位线定理,解题时熟知梯形的中位线被分成的两部分分别是两个三角形的中位线.
找相似题
(2013·巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是( )
(2012·达州)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:
①EF∥AD;②S
△ABO
=S
△DCO
;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.
其中正确的个数是( )
(2010·达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )
(2008·岳阳)如图,∠CDA=∠BAD=90°,AB=2CD,M,N分别为AD,BC的中点,连MN交AC、BD于点E、F,若ME=4,则EF的长度是( )
(2008·泸州)如图,梯形ABCD中,AD∥BC,E、F分别是两腰的中点,且AD=5,BC=7,则EF的长为( )