试题
题目:
(2011·锡山区一模)如图,梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形中位线EF上一点P,若EF=3,则梯形ABCD的周长为
12
12
.
答案
12
解:
∵EF是梯形中位线,
∴EF∥BC,AD+BC=2EF=6,
∴∠EPB=∠PBC,
又∵BP是∠ABC的角平分线,
∴∠EBP=∠PBC,
∴∠EBP=∠EPB,
∴BE=EP,
又∵E似AB中点,
∴AE=BE,
∴AB=2EP,
同理CD=2FP,
∴AB+CD=2(EP+FP)=2EF=6,
∴梯形周长=AD+BC+AB+CD=6+6=12.
考点梳理
考点
分析
点评
梯形中位线定理.
利用角平分线的性质和梯形中位线性质,可求出BE=EP,而AE=BE,所以AB=2EP,同理CD=2DF,所以可求出AB+CD的长,再利用梯形中位线定理可求出上下底之和,那么梯形周长可求.
本题利用了角平分线性质,梯形中位线定理、以及梯形周长公式.
找相似题
(2013·巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是( )
(2012·达州)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:
①EF∥AD;②S
△ABO
=S
△DCO
;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.
其中正确的个数是( )
(2010·达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )
(2008·岳阳)如图,∠CDA=∠BAD=90°,AB=2CD,M,N分别为AD,BC的中点,连MN交AC、BD于点E、F,若ME=4,则EF的长度是( )
(2008·泸州)如图,梯形ABCD中,AD∥BC,E、F分别是两腰的中点,且AD=5,BC=7,则EF的长为( )