试题
题目:
如图,梯形ABCD中,AD∥BC,MN是它的中位线,已知AD=5,MN=7,那么BC=
9
9
.
答案
9
解:∵梯形ABCD中,AD∥BC,MN是它的中位线,
∴MN=
1
2
(AD+BC),
∵AD=5,MN=7,
∴BC=9,
故答案为9.
考点梳理
考点
分析
点评
梯形中位线定理.
直接利用梯形的中位线的性质定理即可求得线段BC的长.
本题考查了梯形的中位线定理,牢记中位线的性质定理是解决此类问题的关键.
找相似题
(2013·巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是( )
(2012·达州)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:
①EF∥AD;②S
△ABO
=S
△DCO
;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.
其中正确的个数是( )
(2010·达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )
(2008·岳阳)如图,∠CDA=∠BAD=90°,AB=2CD,M,N分别为AD,BC的中点,连MN交AC、BD于点E、F,若ME=4,则EF的长度是( )
(2008·泸州)如图,梯形ABCD中,AD∥BC,E、F分别是两腰的中点,且AD=5,BC=7,则EF的长为( )