试题
题目:
如图所示,在等腰梯形ABCD中,AC⊥BD,垂足为E,DF⊥BC,垂足为F,MN是梯形ABCD的中位线.
求证:DF=MN.
答案
证明:过点D作DG∥AC,交BC延长线于点G,
∵AD∥BC,
∴四边形ACGD是平行四边形,
∴AD=CG,AC=DG,
在等腰梯形ABCD中,
∵AC=DB,
∴AC=BD=DG,
∴△BDG是等腰直角三角形.
∵DF⊥BC
∴DF=
1
2
BG=
1
2
(BC+CG),
又∵MN为中位线,
∴MN=
1
2
(AD+BC)=
1
2
(BC+CG),
∴DF=MN.
证明:过点D作DG∥AC,交BC延长线于点G,
∵AD∥BC,
∴四边形ACGD是平行四边形,
∴AD=CG,AC=DG,
在等腰梯形ABCD中,
∵AC=DB,
∴AC=BD=DG,
∴△BDG是等腰直角三角形.
∵DF⊥BC
∴DF=
1
2
BG=
1
2
(BC+CG),
又∵MN为中位线,
∴MN=
1
2
(AD+BC)=
1
2
(BC+CG),
∴DF=MN.
考点梳理
考点
分析
点评
专题
等腰梯形的性质;梯形中位线定理.
过点D作DG∥AC,交BC延长线于点G,可得四边形ACGD是平行四边形,然后根据BD=AC=DG易得△BDG是等腰直角三角形,可得DF=
1
2
BG=
1
2
(BC+CG),又已知MN为梯形的中位线,可得MN=
1
2
(AD+BC)=
1
2
(BC+CG),即可得证.
本题考查了等腰梯形的性质及梯形的中位线定理,难度较大,关键是通过巧妙地作辅助线进行证明.
证明题.
找相似题
(2013·巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是( )
(2012·达州)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:
①EF∥AD;②S
△ABO
=S
△DCO
;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.
其中正确的个数是( )
(2010·达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )
(2008·岳阳)如图,∠CDA=∠BAD=90°,AB=2CD,M,N分别为AD,BC的中点,连MN交AC、BD于点E、F,若ME=4,则EF的长度是( )
(2008·泸州)如图,梯形ABCD中,AD∥BC,E、F分别是两腰的中点,且AD=5,BC=7,则EF的长为( )