试题

题目:
青果学院如图,在梯形ABCD中,AB∥CD,对角线AC⊥BD,且AC=5cm,BD=12cm.
(1)求梯形中位线的长;
(2)求梯形的面积.
答案
(1)解:青果学院过D作DE∥AC,交BA的延长线于E,作DN⊥AB于N,
∵DC∥AB,DE∥CA,
∴四边形DCAE是平行四边形,
∴DE=AC=5cm,DC=AE,
∵AC⊥BD,DE∥AC,
∴BD⊥DE,
即∠EDB=90°,
∵在Rt△EDB中,由勾股定理得:BE=
DE2+BD2
=
52+122
=13(cm),
∴梯形ABCD的中位线是:
1
2
(DC+AB)=
1
2
BE=
1
2
×13cm=6.5cm.
答:梯形的中位线是6.5cm.

(2)解:∵在Rt△EDB中,由三角形的面积公式得:
1
2
DE×BD=
1
2
BE×DN,
∴5×12=13DN,
∴DN=
60
13

∴梯形ABCD的面积是:
1
2
×(DC+AB)×DN=
1
2
×13×
60
13
=30(cm2),
答:梯形ABCD的面积是30cm2
(1)解:青果学院过D作DE∥AC,交BA的延长线于E,作DN⊥AB于N,
∵DC∥AB,DE∥CA,
∴四边形DCAE是平行四边形,
∴DE=AC=5cm,DC=AE,
∵AC⊥BD,DE∥AC,
∴BD⊥DE,
即∠EDB=90°,
∵在Rt△EDB中,由勾股定理得:BE=
DE2+BD2
=
52+122
=13(cm),
∴梯形ABCD的中位线是:
1
2
(DC+AB)=
1
2
BE=
1
2
×13cm=6.5cm.
答:梯形的中位线是6.5cm.

(2)解:∵在Rt△EDB中,由三角形的面积公式得:
1
2
DE×BD=
1
2
BE×DN,
∴5×12=13DN,
∴DN=
60
13

∴梯形ABCD的面积是:
1
2
×(DC+AB)×DN=
1
2
×13×
60
13
=30(cm2),
答:梯形ABCD的面积是30cm2
考点梳理
梯形中位线定理;三角形的面积;勾股定理;平行四边形的判定与性质.
(1)过D作DE∥AC,交BA的延长线于E,作DN⊥AB于N,得出平行四边形DCAE,求出DE=AC,DC=AE,推出∠EDB=90°,根据勾股定理求出BE,根据梯形的中位线得出
1
2
BE,代入求出即可;
(2)根据直角三角形的面积公式得出BE×DN=DE×BD,求出DN,再根据梯形的面积公式求出即可.
本题考查了梯形的性质,三角形的面积,勾股定理,平行四边形的性质和判定的应用,关键是求出高DN和BE的长,题目比较典型,综合性比较强,通过做此题培养了学生的推理能力和计算能力.
计算题.
找相似题