试题
题目:
(体验探究题)如图所示,梯形ABCD中,DC∥AB,将梯形对折,使点D,C分别落在AB上的D′,C′处,折痕为EF,若CD=3cm,EF=4cm,则AD′+BC′的长为
2
2
cm.
答案
2
解:∵ABCD是梯形,EF是折痕.
∴EF是梯形的中位线,D′C′=DC.
∴EF=
1
2
(AB+CD).
又∵CD=3,EF=4.
∴AB=5,
∵D′C′=DC=3.
∴AD′+BC′=AB-D′C′=AB-DC=2(cm).
故AD′+BC′的长是2cm.
故答案为:2.
考点梳理
考点
分析
点评
专题
梯形;梯形中位线定理.
由题意知,EF是梯形的中位线,D′C′=DC.再根据梯形的中位线的性质求出AB的值.
本题利用了对折的特点得出EF是梯形的中位线,D′C′=DC.再根据梯形的中位线的性质求出AB后,代入数值求解.
探究型.
找相似题
(2013·巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是( )
(2012·达州)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:
①EF∥AD;②S
△ABO
=S
△DCO
;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.
其中正确的个数是( )
(2010·达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )
(2008·岳阳)如图,∠CDA=∠BAD=90°,AB=2CD,M,N分别为AD,BC的中点,连MN交AC、BD于点E、F,若ME=4,则EF的长度是( )
(2008·泸州)如图,梯形ABCD中,AD∥BC,E、F分别是两腰的中点,且AD=5,BC=7,则EF的长为( )