答案

证明:分别过点D、A、F作直线BC的垂线,垂足分别为P、T、Q
∵四边形ABDE为正方形
∴AB=BD,∠ABD=90°
∴∠1=∠3
而∠DPB=∠BTA=90°
∴△DPB≌△BTA (AAS)
∴DP=BT,PB=AT
同理AT=CQ,TC=FQ,
∴PB=CQ
又∵H为BC的中点,
∴BH=HC
∴PB+BH=CQ+CH,即:PH=QH
在直角梯形DPQF中,M为DF的中点,H为PQ的中点
∴MH∥DP
MH=
(DP+FQ)=
(BT+TC)=
BC
又∵DP⊥BC,MH⊥BC
即:MH⊥BC,且MH=
BC.

证明:分别过点D、A、F作直线BC的垂线,垂足分别为P、T、Q
∵四边形ABDE为正方形
∴AB=BD,∠ABD=90°
∴∠1=∠3
而∠DPB=∠BTA=90°
∴△DPB≌△BTA (AAS)
∴DP=BT,PB=AT
同理AT=CQ,TC=FQ,
∴PB=CQ
又∵H为BC的中点,
∴BH=HC
∴PB+BH=CQ+CH,即:PH=QH
在直角梯形DPQF中,M为DF的中点,H为PQ的中点
∴MH∥DP
MH=
(DP+FQ)=
(BT+TC)=
BC
又∵DP⊥BC,MH⊥BC
即:MH⊥BC,且MH=
BC.