试题
题目:
(2002·天津)如图,梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=5cm,BD=12cm,则该梯形的中位线的长等于
6.5
6.5
cm.
答案
6.5
解:先过D作DE∥AC,交BC的延长线于E,
∵AD∥CE,DE∥AC,
∴四边形ACED是平行四边形,
∴AD=CE,DE=AC,
又∵AC⊥BD,DE∥AC,
∴∠BDE=90°,
∴BE=
BD
2
+
DE
2
=
12
2
+
5
2
=13cm,
又BE=BC+CE,
∴BE=BC+AD,
∴中位线长=
1
2
×BE=
1
2
×13=6.5(cm).
故答案为:6.5cm.
考点梳理
考点
分析
点评
专题
梯形中位线定理.
先过D作DE∥AC,交BC的延长线于E.再利用两组对边平行,可证四边形ACED是·,那么就有AD=CE,DE=AC,又DE∥AC,AC⊥BD,那么∠BDE=90°,再利用勾股定理可求BE,而BE=BC+CE=BC+AD,再利用梯形中位线定理可求中位线的长.
本题利用了平行四边形的判定和性质、梯形中位线定理等知识.
压轴题.
找相似题
(2013·巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是( )
(2012·达州)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:
①EF∥AD;②S
△ABO
=S
△DCO
;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.
其中正确的个数是( )
(2010·达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )
(2008·岳阳)如图,∠CDA=∠BAD=90°,AB=2CD,M,N分别为AD,BC的中点,连MN交AC、BD于点E、F,若ME=4,则EF的长度是( )
(2008·泸州)如图,梯形ABCD中,AD∥BC,E、F分别是两腰的中点,且AD=5,BC=7,则EF的长为( )