试题
题目:
如图所示,在梯形ABCD中,AD∥BC,中位线EF交BD于点O,若OE:OF=1:4,则AD:BC等于( )
A.1:2
B.1:4
C.1:8
D.1:16
答案
B
解:设OE=x,则OF=4x,
∵AD∥BC,EF是中位线,
∴EF∥AD∥BC,
且E、F都是中点,
∴O是BD的中点,
∴OE是△ABD的中位线,
∴AD=2x,
同理,BC=8x,
∴AD:BC=2x:8x=1:4.
故选B.
考点梳理
考点
分析
点评
梯形中位线定理.
先设OE=x,则OF=4x,由于EF是梯形的中位线,利用平行线分线段成比例定理的推论,可知OE是△ABD的中位线,同理OF是△BCD的中位线,利用三角形中位线定理,可求出AD、BC的长,即可求出AD:BC.
本题利用了梯形、三角形中位线定理以及平行线分线段成比例定理的推论.
找相似题
(2013·巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是( )
(2012·达州)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:
①EF∥AD;②S
△ABO
=S
△DCO
;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.
其中正确的个数是( )
(2010·达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )
(2008·岳阳)如图,∠CDA=∠BAD=90°,AB=2CD,M,N分别为AD,BC的中点,连MN交AC、BD于点E、F,若ME=4,则EF的长度是( )
(2008·泸州)如图,梯形ABCD中,AD∥BC,E、F分别是两腰的中点,且AD=5,BC=7,则EF的长为( )