试题
题目:
(2006·天津)如图,在梯形ABCD中,AB∥CD,中位线EF与对角线AC、BD交于M、N两点,若EF=18cm,MN=8cm,则AB的长等于( )
A.10cm
B.13cm
C.20cm
D.26cm
答案
D
解:∵EF是梯形的中位线,
∴EF∥CD∥AB.
∴AM=CM,BN=DN.
∴EM是△ACD的中位线,NF是△BCD的中位线,
∴EM=
1
2
CD,NF=
1
2
CD.
∴EM=NF=
EF-MN
2
=
18-8
2
=5,即CD=10.
∵EF是梯形ABCD的中位线,
∴DC+AB=2EF,即10+AB=2×18=36.
∴AB=26.
故选D.
考点梳理
考点
分析
点评
梯形中位线定理;三角形中位线定理.
首先根据梯形的中位线定理,得到EF∥CD∥AB,再根据平行线等分线段定理,得到M,N分别是AC,BD的中点;
然后根据三角形的中位线定理得到CD=2EM=2NF=10,最后根据梯形的中位线定理即可求得AB的长.
此题考查了三角形中位线定理、平行线等分线段定理和梯形的中位线定理,解答时要将三个定理联合使用.
找相似题
(2013·巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是( )
(2012·达州)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:
①EF∥AD;②S
△ABO
=S
△DCO
;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.
其中正确的个数是( )
(2010·达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )
(2008·岳阳)如图,∠CDA=∠BAD=90°,AB=2CD,M,N分别为AD,BC的中点,连MN交AC、BD于点E、F,若ME=4,则EF的长度是( )
(2008·泸州)如图,梯形ABCD中,AD∥BC,E、F分别是两腰的中点,且AD=5,BC=7,则EF的长为( )