试题

题目:
结合具体的数,通过特例进行归纳,然后判断下列说法的对错,认为对的,说明理由,认为错的,举出反例.
(1)任何一个数与它的相反数的和都为O;
(2)任何一个数a(a≠0)与它的倒数的积可能是1也可能是-1;
(3)如果a大于b(a<0,b<0).那么a的倒数大于b的倒数.
答案
解:(1)是正确的.
假设a为任意有理数,则它的相反数是-a,
所以a+(-a)=0,
所以(1)的说法是正确的;

(2)是错误的.
例如:a的倒数是
1
a
,则a×
1
a
=1,
-a的倒数是-
1
a
(-a)×(-
1
a
)=1
,(7分)
a(a≠o)的倒数与a的积只能是1,
所以(2)的说法是错误的;

(3)是错误的.
例如:a=-1,b=-2,则a>b,
而-1的倒数是-1,-2的倒数是-
1
2

显然:-1<-
1
2

1
a
1
b

所以(3)的说法是错误的.
解:(1)是正确的.
假设a为任意有理数,则它的相反数是-a,
所以a+(-a)=0,
所以(1)的说法是正确的;

(2)是错误的.
例如:a的倒数是
1
a
,则a×
1
a
=1,
-a的倒数是-
1
a
(-a)×(-
1
a
)=1
,(7分)
a(a≠o)的倒数与a的积只能是1,
所以(2)的说法是错误的;

(3)是错误的.
例如:a=-1,b=-2,则a>b,
而-1的倒数是-1,-2的倒数是-
1
2

显然:-1<-
1
2

1
a
1
b

所以(3)的说法是错误的.
考点梳理
倒数;相反数.
(1)假设a为任意有理数,则它的相反数是-a,再根据+(-a)=0即可得出结论;
(2)根据倒数的定义得出a的倒数是
1
a
,则a×
1
a
=1进行解答即可;‘
(3)假设a=-1,b=-2,则a>b,而-1的倒数是-1,-2的倒数是-
1
2
,再比较出其大小即可.
本题考查的是倒数、相反数的定义及有理数的大小比较,熟知以上知识是解答此题的关键.
探究型.
找相似题