试题

题目:
在函数y=
-k2-2
x
(k为常数)的图象上有三个点(-2,y1),(-1,y2),(
1
2
,y3),函数值y1,y2,y3的大小为
y3<y1<y2
y3<y1<y2

答案
y3<y1<y2

解:∵-k2-2<0,∴函数应在二四象限,若x1<0,x2>0,说明横坐标为-2,-1的点在第二象限,横坐标为
1
2
的在第四象限,∵第二象限的y值总比第四象限的点的y值大,∴那么y3最小,在第二象限内,y随x的增大而增大,∴y1<y2
即y3<y1<y2
考点梳理
反比例函数图象上点的坐标特征.
先判断出函数图象所在的象限,再根据其坐标特点解答即可.
在反比函数中,已知各点的横坐标,比较纵坐标的大小,首先应区分各点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.
找相似题