试题
题目:
(2004·北京)已知,如图,DC∥AB,且DC=
1
2
AB,E为AB的中点.
(1)求证:△AED≌△EBC;
(2)观察图形,在不添加辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形(直接写出结果,不要求证明):
△AEC,△ECD,△ACD
△AEC,△ECD,△ACD
.
答案
△AEC,△ECD,△ACD
(1)证明:∵DC=
1
2
AB,E为AB的中点,
∴CD=BE=AE.
又∵DC∥AB,
∴四边形ADCE是平行四边形.
∴CE=AD,CE∥AD.
∴∠BEC=∠BAD.
在△BEC和△EAD中,
BE=EA
∠BEC=∠EAD
EC=AD
,
∴△BEC≌△EAD(SAS).
(2)解:与△AED的面积相等的三角形有:△AEC,△ECD,△AED.
故答案为:△AEC,△ECD,△ACD.
考点梳理
考点
分析
点评
专题
平行四边形的判定.
由DC∥AB,且DC=
1
2
AB,E为AB的中点,可判定四边形ADCE是平行四边形,有CE=AD,CE∥AD·∠BEC=∠BAD,故可由SAS证得△BEC≌△EAD,在平行四边形ADCE中,△AED,△AEC,△ECD,△AED都是等底等高的三角形,故它们的面积相等.
本题利用了中点的性质,平行四边形的判定和性质,全等三角形的判定和性质,三角形的性质求解.
证明题;开放型.
找相似题
(2013·牡丹江)如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是( )
(2013·泸州)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )
(2012·益阳)如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是( )
(2010·宁夏)点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有( )
(2004·聊城)如图,有两块全等的含30°角的三角板拼成形状不同的平行四边形,最多可以拼成( )