答案
证明:∵△ABD和△FBC都是等边三角形,
∴∠DBF+∠FBA=∠ABC+∠ABF=60°,BD=BA,BF=BC
∴∠DBF=∠ABC.
∴在△ABC与△DBF中,
∴△ABC≌△DBF(SAS),
∴AC=DF=AE,
同理可证△ABC≌△EFC,
∴AB=EF=AD,
∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).
证明:∵△ABD和△FBC都是等边三角形,
∴∠DBF+∠FBA=∠ABC+∠ABF=60°,BD=BA,BF=BC
∴∠DBF=∠ABC.
∴在△ABC与△DBF中,
∴△ABC≌△DBF(SAS),
∴AC=DF=AE,
同理可证△ABC≌△EFC,
∴AB=EF=AD,
∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).