试题
题目:
(2003·烟台)已知一个凸四边形ABCD的四条边的长顺次是a、b、c、d,且a
2
+ab-ac-bc=0,b
2
+bc-bd-cd=0,那么四边形ABCD是( )
A.平行四边形
B.矩形
C.菱形
D.梯形
答案
A
解:由a
2
+ab-ac-bc=0,可知(a+b)(a-c)=0,则a-c=0,即a=c;
由b
2
+bc-bd-cd=0,可知(b+c)(b-d)=0;则b-d=0,即b=d.
(其中a,b,c,d都是正数,a+b、b+c一定不等于0)
由a=c;b=d知四边形ABCD的两组对边分别相等,则四边形ABCD是平行四边形.
故选A.
考点梳理
考点
分析
点评
平行四边形的判定;因式分解的应用.
由a
2
+ab-ac-bc=0分解因式,可得到(a+b)(a-c)=0,得a=c,再由b
2
+bc-bd-cd=0,可得到b=d,则四边形的两组对边分别相等,所以四边形ABCD是平行四边形.
本题考查了平行四边形的判定,解决本题的关键是应用因式分解的知识得到四边形对边的关系.
找相似题
(2013·牡丹江)如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是( )
(2013·泸州)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )
(2012·益阳)如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是( )
(2010·宁夏)点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有( )
(2004·聊城)如图,有两块全等的含30°角的三角板拼成形状不同的平行四边形,最多可以拼成( )