试题

题目:
不能判定四边形ABCD是平行四边形的条件是(  )



答案
B
青果学院解:A、∠A=∠C,∠B=∠D,即两组对角分别相等的四边形是平行四边形,所以由此可以推知四边形ABCD是平行四边形;故本选项正确;
B、AB∥CD,AD=BC,即一组对边相等,另一组对边平行,也有可能是等腰梯形,所以不能判定四边形ABCD是平行四边形;故本选项错误;
C、∵AB∥CD,
∴∠B=∠C;
又∵∠A=∠C,
∴∠A=∠B,
∴AD∥BC,
∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形);故本选项正确;
D、AB∥CD,AB=CD,即四边形ABCD的一组对边平行且相等,所以据此可以推知四边形ABCD是平行四边形;故本选项正确;
故选B.
考点梳理
平行四边形的判定.
平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.
找相似题