试题
题目:
已知,如图.△ABC中,BD⊥AC于D,CE⊥AB于E,点M、F分别是BC、DE的中点.
求证:MF⊥DE.
答案
证明:连接MD、ME.
∵Rt△CBD中M为BC的中点,
∴MD=
1
2
BC,
∵Rt△CBE中M为BC的中点,
∴ME=
1
2
BC,
∴MD=ME,
∵F是DE的中点,
∴FM⊥DE.
证明:连接MD、ME.
∵Rt△CBD中M为BC的中点,
∴MD=
1
2
BC,
∵Rt△CBE中M为BC的中点,
∴ME=
1
2
BC,
∴MD=ME,
∵F是DE的中点,
∴FM⊥DE.
考点梳理
考点
分析
点评
专题
直角三角形斜边上的中线;等腰三角形的性质.
连接MD、ME,根据直角三角形斜边上的中线等于斜边的一半可得MD=
1
2
BC=ME,再根据等腰三角形三线合一的性质即可证得结论.
此题主要考查等腰三角形的性质及直角三角形斜边上的中线的性质的综合运用.
证明题.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,则图中等腰三角形有几个( )
如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=3cm.则中线CD的长度为( )
如图,∠ABC=∠ADC=Rt∠,E是AC的中点,则( )
如图,△ABC中,AB=AC=8,BC=6,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )