试题
题目:
如图,点A的坐标为(-
2
,0),点B在直线y=x上运动,当线段AB最短时点B的坐为( )
A.(-
2
2
,-
2
2
)
B.(-
1
2
,-
1
2
)
C.(
2
2
,
-
2
2
)
D.(0,0)
答案
A
解:过A作AB⊥直线y=x于B,则此时AB最短,过B作BC⊥OA于C,
∵直线y=x,
∴∠AOB=45°=∠OAB,
∴AB=OB,
∵BC⊥OA,
∴C为OA中点,
∵∠ABO=90°,
∴BC=OC=AC=
1
2
OA=
2
2
,
∴B(-
2
2
,-
2
2
).
故选A.
考点梳理
考点
分析
点评
专题
一次函数综合题;等腰三角形的性质;直角三角形斜边上的中线.
过A作AB⊥直线y=x于B,则此时AB最短,过B作BC⊥OA于C,推出∠AOB=45°,求出∠OAB=45°,得出等腰直角三角形AOB,得出C为OA中点,得出BC=OC=AC=
1
2
OA,代入求出即可.
本题考查了等腰三角形性质,直角三角形斜边上中线的性质,一次函数等知识点的应用,主要考查学生能否找到符合条件的B点,题目比较典型,是一道具有代表性的题目.
计算题.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,则图中等腰三角形有几个( )
如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=3cm.则中线CD的长度为( )
如图,∠ABC=∠ADC=Rt∠,E是AC的中点,则( )
如图,△ABC中,AB=AC=8,BC=6,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )