试题
题目:
(2004·郴州)方程x
2
+6x-5=0的左边配成完全平方后所得方程为( )
A.(x+3)
2
=14
B.(x-3)
2
=14
C.(x+6)
2
=
1
2
D.以上答案都不对
答案
A
解:∵x
2
+6x-5=0
∴x
2
+6x=5
∴x
2
+6x+9=5+9
∴(x+3)
2
=14.
故选A.
考点梳理
考点
分析
点评
专题
解一元二次方程-配方法.
把方程变形得到x
2
+6x=5,方程两边同时加上一次项的系数一半的平方,两边同时加上9即可.
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
配方法.
找相似题
(2013·兰州)用配方法解方程x
2
-2x-1=0时,配方后得的方程为( )
(2012·临沂)用配方法解一元二次方程x
2
-4x=5时,此方程可变形为( )
(2012·佛山)用配方法解一元二次方程x
2
-2x-3=0时,方程变形正确的是( )
(2011·兰州)用配方法解方程x
2
-2x-5=0时,原方程应变形为( )
(2011·朝阳)用配方法解一元二次方程x
2
-4x+2=0时,可配方得( )