试题
题目:
计算
(1)x(2x-1)-x
2
(2-x);
(2)(2ab
2
-b
3
)
2
÷2b
3
;
(3)
3
-
27
+
1
3
;
(4)
1
2
3
÷
2
1
3
×
1
2
5
;
(5)
(2
12
-3
1
3
)×
6
;
(6)
(-
3
)
2
-
1
2
+|1-
2
|
.
答案
解:(1)x(2x-1)-x
2
(2-x)
=2x
2
-x-2x
2
+x
3
=x
3
-x;
(2)(2ab
2
-b
3
)
2
÷2b
3
=(4a
2
b
4
-4ab
5
+b
6
)÷2b
3
=
2
a
2
b-2a
b
2
+
1
2
b
3
;
(3)
3
-
27
+
1
3
=
3
-3
3
+
3
3
=
-
5
3
3
;
(4)
1
2
3
÷
2
1
3
×
1
2
5
=
5
3
×
3
7
×
7
5
=
1
=1;
(5)
(2
12
-3
1
3
)×
6
=
2
2×6×6
-3
2
=
2·6
2
-3
2
=
12
2
-3
2
=
9
2
;
(6)
(-
3
)
2
-
1
2
+|1-
2
|
=
3-
2
2
+
2
-1
=
2+
2
2
.
解:(1)x(2x-1)-x
2
(2-x)
=2x
2
-x-2x
2
+x
3
=x
3
-x;
(2)(2ab
2
-b
3
)
2
÷2b
3
=(4a
2
b
4
-4ab
5
+b
6
)÷2b
3
=
2
a
2
b-2a
b
2
+
1
2
b
3
;
(3)
3
-
27
+
1
3
=
3
-3
3
+
3
3
=
-
5
3
3
;
(4)
1
2
3
÷
2
1
3
×
1
2
5
=
5
3
×
3
7
×
7
5
=
1
=1;
(5)
(2
12
-3
1
3
)×
6
=
2
2×6×6
-3
2
=
2·6
2
-3
2
=
12
2
-3
2
=
9
2
;
(6)
(-
3
)
2
-
1
2
+|1-
2
|
=
3-
2
2
+
2
-1
=
2+
2
2
.
考点梳理
考点
分析
点评
二次根式的乘除法;整式的加减;单项式乘单项式;整式的除法.
(1)先计算单项式与多项式的乘法,再合并同类项;
(2)先运用完全平方差公式计算,再算多项式与单项式的除法;
(3)先化为最简根式,再合并同类二次根式;
(4)按照
a
·
b
=
ab
(a≥0,b≥0)进行计算;
(5)运用乘法的分配律简化计算;
(6)先乘方和分母有理化,再合并同类二次根式即可.
本题实质是考查整式的有关计算以及二次根式的运算.注意结合算式的特点,选择简便的方法进行计算.
找相似题
(2012·大丰市模拟)计算:
(1-
2
)
2012
·(1+
2
)
2011
=
2
-1
2
-1
.
(2012·鞍山二模)计算
-6
8
×2
6
÷4
27
=
-4
-4
.
(2011·玄武区一模)计算
3a
·
27
a
3
(a≥0)的结果
9a
2
9a
2
.
(2011·台州模拟)化简:
8
×
2
=
4
4
.
(2010·宝坻区一模)计算:
4
3
7
×(-
1
2
28
)
=
-4
3
-4
3
.