试题
题目:
如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是( )
A.点A
B.点B
C.点C
D.点D
答案
D
解:
可以瞄准点D击球.
故选D.
考点梳理
考点
分析
点评
生活中的轴对称现象.
要击中点N,则需要满足点M反弹后经过的直线过N点,画出反射路线即可得出答案.
本题考查了轴对称的知识,注意结合图形解答,不要凭空想象,实际操作一下.
找相似题
(2011·宜昌)如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的( )
(2006·巴中)如图,是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出,该球最后落入1号袋,经过反射的次数是( )
(2004·江西)如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子,我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步,已知点A为乙方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为( )
桌面上有A,B两球,若要将B球射向桌面任意一边,使一次反弹后击中A球,则如图所示8个点中,可以瞄准的点有( )个.
下列四个图案中,具有一个共有性质.则下面四个图案中,满足上述性质的一个是( )