答案
解:由
++=0,去分母,得
(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)=0,
而(a+1)
2+(b+2)
2+(c+3)
2
=[(a+1)+(b+2)+(c+3)]
2-2[(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)]
=(a+b+c+6)
2
=(0+6)
2
=36.
解:由
++=0,去分母,得
(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)=0,
而(a+1)
2+(b+2)
2+(c+3)
2
=[(a+1)+(b+2)+(c+3)]
2-2[(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)]
=(a+b+c+6)
2
=(0+6)
2
=36.