试题
题目:
如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP=
5cm或10cm
5cm或10cm
时,才能使△ABC和△APQ全等.
答案
5cm或10cm
解:∵PQ=AB,
∴根据三角形全等的判定方法HL可知,
①当P运动到AP=BC时,△ABC≌△QPA,即AP=BC=5cm;
②当P运动到与C点重合时,△QAP≌△BCA,即AP=AC=10cm.
考点梳理
考点
分析
点评
全等三角形的判定.
本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置;
②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.
本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.
找相似题
(2011·宿迁)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )
(2011·上海)下列命题中,真命题是( )
(2009·鸡西)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于
1
2
CD长为半径画弧,两弧交于点P,作射线OP由作法得△OCP≌△ODP的根据是( )
(2007·天津)下列判断中错误的是( )
(2006·临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有( )