试题
题目:
已知△ABC中,AB=8,AC=6,AD是中线,求AD的取值范围是
1<AD<7
1<AD<7
.
答案
1<AD<7
解:延长AD至点E,使DE=AD,连接EC,
∵BD=CD,DE=AD,∠ADB=∠EDC,
∴△ABD≌△ECD,∴CE=AB,
∵AB=8,AC=6,CE=8,
设AD=x,则AE=2x,
∴2<2x<14,
∴1<x<7,
∴1<AD<7.
考点梳理
考点
分析
点评
全等三角形的判定;三角形三边关系.
先作辅助线,延长AD至点E,使DE=AD,连接EC,先证明△ABD≌△ECD,在△AEC中,由三角形的三边关系定理得出答案.
本题考查了三角形的三边关系定理:三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.
找相似题
(2011·宿迁)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )
(2011·上海)下列命题中,真命题是( )
(2009·鸡西)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于
1
2
CD长为半径画弧,两弧交于点P,作射线OP由作法得△OCP≌△ODP的根据是( )
(2007·天津)下列判断中错误的是( )
(2006·临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有( )