试题

题目:
青果学院已知AB∥CD,AD∥BC,AC与BD交于点O,则图中全等的三角形有(  )



答案
D
解:图中全等的三角形有4对,
分别是△AOD≌△COB,△AOB≌△COD,△ABD≌△CDB,△ABC≌△CDA,
证明:∵AB∥CD,AD∥BC,
∴四边形ABCD为平行四边形,
∴OA=OC,OB=OD,AD=BC,AB=DC,∠BAD=∠DCB,∠ABC=∠CDA,
在△AOD和△COB中,
AD=BC,OA=OC,OB=OD,
∴△AOD≌△COB;
在△AOB和△COD中,
AB=DC,OA=OC,OB=OD,
∴△AOB≌△COD;
在△ABD和△CDB中,
AD=BC,∠BAD=∠DCB,AB=CD,
∴△ABD≌△CDB;
在△ABC和△CDA中,
AB=CD,∠ABC=∠CDA,BC=AD,
∴△ABC≌△CDA.
故选D.
考点梳理
全等三角形的判定.
先由四边形ABCD的两组对边平行,得到四边形为平行四边形,根据平行四边形的性质得到两组对边相等,两组对角相等,且对角线互相平分,然后利用“SSS”的全等方法得到△AOD和△COB全等及△AOB和△COD全等,利用“SAS”的全等方法得到△ABD和△CDB全等及△ABC和△CDA全等,从而得到图中全等三角形的对数为4.
此题考查了平行四边形的性质,以及全等三角形的判定.本题属于结论开放型问题,此类问题的特点是已知相关条件,需要根据条件寻求相应的结论,并且符合条件的结论不唯一.判断出四边形ABCD为平行四边形是解本题的突破点,其中判定三角形全等的方法有:SSS,SAS,ASA,AAS及HL,根据实际情况选择合适的方法.
综合题.
找相似题