试题
题目:
如图,A,D,F,B在同一直线上,AD=BF,AE=BC,且AE∥BC,求证:∠AFE=∠BDC.
答案
证明:∵AE∥BC,
∴∠A=∠B,
∵AD=BF,
∴AD+DF=BF+DF,
∴AF=BD,
在△AEF和△BCD中,
AE=BC
∠A=∠B
AF=BD
,
∴△AEF≌△BCD(SAS),
∴∠AFE=∠BDC.
证明:∵AE∥BC,
∴∠A=∠B,
∵AD=BF,
∴AD+DF=BF+DF,
∴AF=BD,
在△AEF和△BCD中,
AE=BC
∠A=∠B
AF=BD
,
∴△AEF≌△BCD(SAS),
∴∠AFE=∠BDC.
考点梳理
考点
分析
点评
专题
全等三角形的判定.
由于AE∥BC,根据平行线的性质可得∠A=∠B,又AD=BF,根据等式性质可得AF=BD,再结合AE=BC,利用SAS可证△AEF≌△BCD,于是∠AFE=∠BDC,
本题考查了全等三角形的判定和性质、平行线的判定和性质,解题的关键是找出SAS所需要的三个条件.
证明题.
找相似题
(2011·宿迁)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )
(2011·上海)下列命题中,真命题是( )
(2009·鸡西)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于
1
2
CD长为半径画弧,两弧交于点P,作射线OP由作法得△OCP≌△ODP的根据是( )
(2007·天津)下列判断中错误的是( )
(2006·临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有( )