试题

题目:
青果学院如图,在△ABC中,∠BAD=∠DAE=∠EAF=∠FAC,则(  )是△ABC的角平分线.



答案
B
解:∵∠BAD=∠DAE=∠EAF=∠FAC,
∴∠BAD+∠DAE=∠EAF+∠FAC,即∠BAE=∠EAC,
∴AE是△ABC的角平分线.
故选B.
考点梳理
三角形的角平分线、中线和高.
由∠BAD=∠DAE=∠EAF=∠FAC,利用等式的性质可得∠BAD+∠DAE=∠EAF+∠FAC,∠BAE=∠EAC,根据三角形的角平分线的定义得到AE是△ABC的角平分线.
本题主要考查了三角形的角平分线的定义:三角形一个内角的平分线与这个内角的对边交于一点,这个内角的顶点与交点间的线段叫做三角形的角平分线.
找相似题