试题
题目:
(2012·泰州一模)如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若AB=6,BD=3,求BC和AE的长.
答案
(1)解:
DE与⊙O的位置关系式相切.
理由是:连接OC,
∵AE⊥CD,CF⊥AB,CE=CF,
∴∠EAC=∠CAF,
∵OA=OC,
∴∠CAF=∠OCA,
∴∠OCA=∠EAC,
∴OC∥AE,
∵AE⊥DE,
∴OC⊥DE,
∵OC为⊙O半径,
∴DE是⊙O的切线,
即DE与⊙O的位置关系式相切.
(2)解:
∵OC⊥DE,
∴∠OCD=90°,
∵AB=6,BD=3,
∴OB=3=BD,
即B为OD中点,
∴CB=OB=BD=3,
∵AB是直径,
∴∠ACB=90°,
在△ACB中,AB=6,BC=3,由勾股定理得:AC=3
3
,
在△ACB中,由三角形的面积公式得:
1
2
×AC×BC=
1
2
×AB×CF,
∴
1
2
×3
3
×3=
1
2
×6×CF,
CF=
3
3
2
,
∵CE=CF,
∴CE=
3
3
2
,
在Rt△AEC中,AC=3
3
,CE=
3
3
2
,由勾股定理得:AE=
9
2
,
即AE=
9
2
,BC=3.
(1)解:
DE与⊙O的位置关系式相切.
理由是:连接OC,
∵AE⊥CD,CF⊥AB,CE=CF,
∴∠EAC=∠CAF,
∵OA=OC,
∴∠CAF=∠OCA,
∴∠OCA=∠EAC,
∴OC∥AE,
∵AE⊥DE,
∴OC⊥DE,
∵OC为⊙O半径,
∴DE是⊙O的切线,
即DE与⊙O的位置关系式相切.
(2)解:
∵OC⊥DE,
∴∠OCD=90°,
∵AB=6,BD=3,
∴OB=3=BD,
即B为OD中点,
∴CB=OB=BD=3,
∵AB是直径,
∴∠ACB=90°,
在△ACB中,AB=6,BC=3,由勾股定理得:AC=3
3
,
在△ACB中,由三角形的面积公式得:
1
2
×AC×BC=
1
2
×AB×CF,
∴
1
2
×3
3
×3=
1
2
×6×CF,
CF=
3
3
2
,
∵CE=CF,
∴CE=
3
3
2
,
在Rt△AEC中,AC=3
3
,CE=
3
3
2
,由勾股定理得:AE=
9
2
,
即AE=
9
2
,BC=3.
考点梳理
考点
分析
点评
切线的判定与性质;全等三角形的判定与性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.
(1)求出AC平分∠EAF,推出OC∥AE,推出OC⊥DE,根据切线判定推出即可;
(2)根据直角三角形斜边上中线性质求出BC=OB=3,根据三角形面积公式求出CF,得出CE,根据勾股定理求出AE即可.
本题考查了切线的性质和判定,三角形的面积,等腰三角形的性质和判定,平行线的性质和判定,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的综合运用.
找相似题
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
(2007·上海模拟)下列命题中,假命题是( )
已知OA平分∠BOC,P是OA上一点,以P为圆心的⊙P与OC相切,则⊙P与OB的位置关系为( )
如图,点P为△ABC的内心,延长AP交△ABC的外接圆⊙O于D,过D作DE∥BC,交AC的延长线于E点.①则直线DE与⊙O的位置关系是
相切
相切
;②若AB=4,AD=6,CE=3,则DE=
3
3
3
3
.
在正方形ABCD中,E为AD中点,AF丄BE交BE于G,交CD于F,连CG延长交AD于H.下列结论:
①CG=CB;②
HE
BC
=
1
4
;③
EG
GF
=
1
3
;④以AB为直径的圆与CH相切于点G,其中正确的是
①②③④
①②③④
.