试题
题目:
(1999·广州)如图,等边△ABC的面积为S,⊙O是它的外接圆,点P是
BC
的中点.
(1)试判断过点C所作⊙O的切线与直线AB是否相交,并证明你的结论;
(2)设直线CP与AB相交于点D,过点B作BE⊥CD,垂足为E,证明BE是⊙O的切线,并求△BDE的面积.
答案
解:(1)CF是⊙O的切线,(如图)
CF与直线AB不相交.(1分)
证明:∵CF是⊙O的切线,
∴∠BCF=∠A,(3分)
∵△ABC是等边三角形,
∴∠ABC=∠A,
∴∠BCF=∠ABC,
∴CF∥AB,
∴CF与直线AB不相交.(4分)
(2)连接BO并延长交AC于H.
∵⊙O是等边△ABC的外接圆,
∴∠BHC=90°,(5分)
∵点P是BC的中点,
∴∠BCE=30°.(6分)
又∵∠ACB=60°,
∴∠HCE=90°.
∵∠BEC=90°,
∴∠HBE=90°.
∴BE是⊙O的切线. (8分)
在△ACD中,
∵∠ACD=90°,∠A=60°,
∴∠D=30°,(9分)
∴BD=BC,
∴DE=CE,
∴S
△BDE
=S
△BCE
,(10分)
在矩形BHCE中,
S
△BCE
=S
△BCH
=
1
2
S,(11分)
∴S
△BCE
=
1
2
S,
∴S
△BDE
=
1
2
S.(12分)
解:(1)CF是⊙O的切线,(如图)
CF与直线AB不相交.(1分)
证明:∵CF是⊙O的切线,
∴∠BCF=∠A,(3分)
∵△ABC是等边三角形,
∴∠ABC=∠A,
∴∠BCF=∠ABC,
∴CF∥AB,
∴CF与直线AB不相交.(4分)
(2)连接BO并延长交AC于H.
∵⊙O是等边△ABC的外接圆,
∴∠BHC=90°,(5分)
∵点P是BC的中点,
∴∠BCE=30°.(6分)
又∵∠ACB=60°,
∴∠HCE=90°.
∵∠BEC=90°,
∴∠HBE=90°.
∴BE是⊙O的切线. (8分)
在△ACD中,
∵∠ACD=90°,∠A=60°,
∴∠D=30°,(9分)
∴BD=BC,
∴DE=CE,
∴S
△BDE
=S
△BCE
,(10分)
在矩形BHCE中,
S
△BCE
=S
△BCH
=
1
2
S,(11分)
∴S
△BCE
=
1
2
S,
∴S
△BDE
=
1
2
S.(12分)
考点梳理
考点
分析
点评
专题
切线的判定与性质.
(1)作⊙O的切线CF,判断出∠BCF=∠ABC,得到CF∥AB,可知CF与直线AB不相交.
(2)OB是圆O直径,证出∠HBE=90°,可得BE是⊙O的切线,并将S
△BDE
转化为S
△BCE
.
本题综合考查了切线的判定,解直角三角形等知识点的运用.此题是一个大综合题,难度较大.
几何综合题;压轴题.
找相似题
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
(2007·上海模拟)下列命题中,假命题是( )
已知OA平分∠BOC,P是OA上一点,以P为圆心的⊙P与OC相切,则⊙P与OB的位置关系为( )
如图,点P为△ABC的内心,延长AP交△ABC的外接圆⊙O于D,过D作DE∥BC,交AC的延长线于E点.①则直线DE与⊙O的位置关系是
相切
相切
;②若AB=4,AD=6,CE=3,则DE=
3
3
3
3
.
在正方形ABCD中,E为AD中点,AF丄BE交BE于G,交CD于F,连CG延长交AD于H.下列结论:
①CG=CB;②
HE
BC
=
1
4
;③
EG
GF
=
1
3
;④以AB为直径的圆与CH相切于点G,其中正确的是
①②③④
①②③④
.