试题
题目:
(2008·天门)如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作EF∥BC交AB的延长线于点E,
交AC的延长线于点F.
(1)求证:EF为⊙O的切线;
(2)若sin∠ABC=
4
5
,CF=1,求⊙O的半径及EF的长.
答案
(1)证明:连接OD;
∵AB是直径,
∴∠ACB=90°;
∵EF∥BC,
∴∠AFE=∠ACB=90°,
∵OA=OD,
∴∠OAD=∠ODA;
又∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴∠ODA=∠DAC,
∴OD∥AF,
∴∠ODE=∠AFD=90°,
即OD⊥EF;
又∵EF过点D,
∴EF是⊙O的切线.
(2)解:连接BD,CD;
∵AB是直径,
∴∠ADB=90°,
∴∠ADB=∠AFD;
∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴BD=CD;
设BD=CD=a;
又∵EF是⊙O的切线,
∴∠CDF=∠DAC,
∴∠CDF=∠OAD=∠DAC,
∴△CDF∽△ABD∽△ADF,
∴
CF
CD
=
BD
AB
CF
DF
=
DF
AF
;
∵sin∠ABC=
AC
AB
=
4
5
,
∴设AC=4x,AB=5x,
∴
1
a
=
a
5x
a
2
=5x,
∴在Rt△CDF中DF
2
=CD
2
-CF
2
=5x-1;
又∵
CF
DF
=
DF
AF
,
∴5x-1=1×(1+4x),
∴x=2,
∴AB=5x=10,AC=4x=8;
∵EF∥BC,
∴△ABC∽△AEF,
∴
AB
AE
=
AC
AF
,
10
AE
=
8
9
,
AE=
45
4
,
∴在Rt△AEF中,
EF=
A
E
2
-A
F
2
=
(
45
4
)
2
-
9
2
=
27
4
.
(1)证明:连接OD;
∵AB是直径,
∴∠ACB=90°;
∵EF∥BC,
∴∠AFE=∠ACB=90°,
∵OA=OD,
∴∠OAD=∠ODA;
又∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴∠ODA=∠DAC,
∴OD∥AF,
∴∠ODE=∠AFD=90°,
即OD⊥EF;
又∵EF过点D,
∴EF是⊙O的切线.
(2)解:连接BD,CD;
∵AB是直径,
∴∠ADB=90°,
∴∠ADB=∠AFD;
∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴BD=CD;
设BD=CD=a;
又∵EF是⊙O的切线,
∴∠CDF=∠DAC,
∴∠CDF=∠OAD=∠DAC,
∴△CDF∽△ABD∽△ADF,
∴
CF
CD
=
BD
AB
CF
DF
=
DF
AF
;
∵sin∠ABC=
AC
AB
=
4
5
,
∴设AC=4x,AB=5x,
∴
1
a
=
a
5x
a
2
=5x,
∴在Rt△CDF中DF
2
=CD
2
-CF
2
=5x-1;
又∵
CF
DF
=
DF
AF
,
∴5x-1=1×(1+4x),
∴x=2,
∴AB=5x=10,AC=4x=8;
∵EF∥BC,
∴△ABC∽△AEF,
∴
AB
AE
=
AC
AF
,
10
AE
=
8
9
,
AE=
45
4
,
∴在Rt△AEF中,
EF=
A
E
2
-A
F
2
=
(
45
4
)
2
-
9
2
=
27
4
.
考点梳理
考点
分析
点评
专题
切线的判定与性质;圆周角定理.
(1)连接OD,只要证明OD⊥EF即可.
(2)连接BD,CD,根据相似三角形的判定可得到△CDF∽△ABD∽△ADF,根据相似比及勾股定理即可求得半径及EF的值.
本题考查切线的判定和性质,圆周角定理,相似三角形的判定和性质等知识点的综合运用.
压轴题.
找相似题
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
(2007·上海模拟)下列命题中,假命题是( )
已知OA平分∠BOC,P是OA上一点,以P为圆心的⊙P与OC相切,则⊙P与OB的位置关系为( )
如图,点P为△ABC的内心,延长AP交△ABC的外接圆⊙O于D,过D作DE∥BC,交AC的延长线于E点.①则直线DE与⊙O的位置关系是
相切
相切
;②若AB=4,AD=6,CE=3,则DE=
3
3
3
3
.
在正方形ABCD中,E为AD中点,AF丄BE交BE于G,交CD于F,连CG延长交AD于H.下列结论:
①CG=CB;②
HE
BC
=
1
4
;③
EG
GF
=
1
3
;④以AB为直径的圆与CH相切于点G,其中正确的是
①②③④
①②③④
.