试题
题目:
(2012·广安)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线.
(2)若BC=2
5
,sin∠BCP=
5
5
,求点B到AC的距离.
(3)在第(2)的条件下,求△ACP的周长.
答案
解:(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°
∴2∠BCP+2∠BCA=180°,
∴∠BCP+∠BCA=90°,
∴直线CP是⊙O的切线.
(2)如右图,作BD⊥AC于点D,
∵PC⊥AC
∴BD∥PC
∴∠PCB=∠DBC
∵BC=2
5
,sin∠BCP=
5
5
,
∴sin∠BCP=sin∠DBC=
DC
BC
=
DC
2
5
=
5
5
,
解得:DC=2,
∴由勾股定理得:BD=4,
∴点B到AC的距离为4.
(3)如右图,连接AN,
∵AC为直径,
∴∠ANC=90°,
∴Rt△ACN中,AC=
CN
cos∠ACN
=
CN
sin∠BCP
=
5
5
5
=5,
又CD=2,
∴AD=AC-CD=5-2=3.
∵BD∥CP,
∴
BD
CP
=
AD
AC
,
∴CP=
20
3
.
在Rt△ACP中,AP=
AC
2
+
CP
2
=
25
3
,
AC+CP+AP=5+
20
3
+
25
3
=20,
∴△ACP的周长为20.
解:(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°
∴2∠BCP+2∠BCA=180°,
∴∠BCP+∠BCA=90°,
∴直线CP是⊙O的切线.
(2)如右图,作BD⊥AC于点D,
∵PC⊥AC
∴BD∥PC
∴∠PCB=∠DBC
∵BC=2
5
,sin∠BCP=
5
5
,
∴sin∠BCP=sin∠DBC=
DC
BC
=
DC
2
5
=
5
5
,
解得:DC=2,
∴由勾股定理得:BD=4,
∴点B到AC的距离为4.
(3)如右图,连接AN,
∵AC为直径,
∴∠ANC=90°,
∴Rt△ACN中,AC=
CN
cos∠ACN
=
CN
sin∠BCP
=
5
5
5
=5,
又CD=2,
∴AD=AC-CD=5-2=3.
∵BD∥CP,
∴
BD
CP
=
AD
AC
,
∴CP=
20
3
.
在Rt△ACP中,AP=
AC
2
+
CP
2
=
25
3
,
AC+CP+AP=5+
20
3
+
25
3
=20,
∴△ACP的周长为20.
考点梳理
考点
分析
点评
专题
切线的判定与性质;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.
(1))根据∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中∠ABC+∠BAC+∠BCA=180°,得到2∠BCP+2∠BCA=180°,从而得到∠BCP+∠BCA=90°,证得直线CP是⊙O的切线.
(2)作BD⊥AC于点D,得到BD∥PC,从而利用sin∠BCP=sin∠DBC=
DC
BC
=
DC
2
5
=
5
5
,求得DC=2,再根据勾股定理求得点B到AC的距离为4.
(3)先求出AC的长度,然后利用BD∥PC的比例线段关系求得CP的长度,再由勾股定理求出AP的长度,从而求得△ACP的周长.
本题考查了切线的判定与性质等知识,考查的知识点比较多,难度较大.
几何综合题;压轴题.
找相似题
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
(2007·上海模拟)下列命题中,假命题是( )
已知OA平分∠BOC,P是OA上一点,以P为圆心的⊙P与OC相切,则⊙P与OB的位置关系为( )
如图,点P为△ABC的内心,延长AP交△ABC的外接圆⊙O于D,过D作DE∥BC,交AC的延长线于E点.①则直线DE与⊙O的位置关系是
相切
相切
;②若AB=4,AD=6,CE=3,则DE=
3
3
3
3
.
在正方形ABCD中,E为AD中点,AF丄BE交BE于G,交CD于F,连CG延长交AD于H.下列结论:
①CG=CB;②
HE
BC
=
1
4
;③
EG
GF
=
1
3
;④以AB为直径的圆与CH相切于点G,其中正确的是
①②③④
①②③④
.