试题
题目:
列方程解应用题:
(1)现有一直径为6cm的圆柱形烧杯,里面有高2m的液体,将这些液体倒入一个内直径是2cm的圆柱形量筒内,这个量筒内液体的液面高度是多少?
(2)甲、乙两车同时从A城去B城,甲车每小时行50千米,乙车每小时行60千米,结果乙车比甲车早到半小时.问A,B两城间的距离是多少?
答案
解:设量筒内液面高度是x厘米,根据题意得:
π·(
6
2
)
2
×2=π·(
2
2
)
2
·x,
解得:x=18,
答:量筒内液面高度是18厘米.
(2)设乙车从A城到达B城需要x小时,则甲需要(x+
1
2
)小时,由题意得出:
50(x+
1
2
)=60x,
解得:x=2.5,
2.5×60=150(km),
答:A、B两城的距离是150千米.
解:设量筒内液面高度是x厘米,根据题意得:
π·(
6
2
)
2
×2=π·(
2
2
)
2
·x,
解得:x=18,
答:量筒内液面高度是18厘米.
(2)设乙车从A城到达B城需要x小时,则甲需要(x+
1
2
)小时,由题意得出:
50(x+
1
2
)=60x,
解得:x=2.5,
2.5×60=150(km),
答:A、B两城的距离是150千米.
考点梳理
考点
分析
点评
一元一次方程的应用.
(1)先设量筒内液面高度是x厘米,根据一个内直径为6厘米的圆柱形烧杯,里面有高2厘米的液体的体积与量筒内液体的体积相等,列出方程,再求解即可;
(2)根据两车速度以及乙车比甲车早到半小时,表示出两地距离即可得出等式.
本题主要考查了一元一次方程的应用,在解题时要能根据题意得出等量关系,列出方程是本题的关键.
找相似题
(2013·济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( )
(2012·台湾)如图为制作果冻的食谱,傅妈妈想依此食谱内容制作六人份的果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加几小匙糖浆?( )
(2007·深圳)一件标价为250元的商品,若该商品按八折销售,则该商品的实际售价是( )
(2006·潍坊)某厂投入200 000元购置生产某新型工艺品的专用设备和模具,共生产这种工艺品x件,又知生产每件工艺品还需投入350元,每件工艺品以销售价550元全部售出,生产这x件工艺品的销售利润=销售总收入-总投入,则下列说法错误的是( )
(2006·宁德)某商场销售一款服装,每件标价150元,若以八折销售,仍可获利30元,则这款服装每件的进价为( )