试题
题目:
已知:|x
1
-1|+(x
2
-2)
2
+|x
3
-3|
3
+(x
4
-4)
4
+…+|x
2007
-2007|
2007
+(x
2008
-2008)
2008
=0,求
1
x
1
x
2
+
1
x
2
x
3
+
1
x
3
x
4
+
+
1
x
2007
x
2008
的值.
答案
解:∵|x
1
-1|+(x
2
-2)
2
+|x
3
-3|
3
+(x
4
-4)
4
+…+|x
2007
-2007|
2007
+(x
2008
-2008)
2008
=0,
∴x
1
-1=0,x
2
-2=0,x
3
-3=0,x
4
-4=0,x
2007
-2007=0,x
2008
-2008=0,
∴x
1
=1,x
2
=2,x
3
=3,x
4
=4,x
2007
=2007,x
2008
=2008,
∴原式=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2007×2008
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
2007
-
1
2008
=1-
1
2008
=
2007
2008
.
解:∵|x
1
-1|+(x
2
-2)
2
+|x
3
-3|
3
+(x
4
-4)
4
+…+|x
2007
-2007|
2007
+(x
2008
-2008)
2008
=0,
∴x
1
-1=0,x
2
-2=0,x
3
-3=0,x
4
-4=0,x
2007
-2007=0,x
2008
-2008=0,
∴x
1
=1,x
2
=2,x
3
=3,x
4
=4,x
2007
=2007,x
2008
=2008,
∴原式=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2007×2008
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
2007
-
1
2008
=1-
1
2008
=
2007
2008
.
考点梳理
考点
分析
点评
专题
非负数的性质:偶次方;非负数的性质:绝对值.
绝对值和偶次幂都是非负数,几个非负数的和为0,则为几个0相加,据此求解.
此题主要考查非负数的性质,解答过程还要注意分析题干特点,总结规律解答.
计算题;规律型.
找相似题
(2012·佳木斯)若(a-1)
2
+|b-2|=0,则(a-b)
2012
的值是( )
(w四四少·芜湖)若|m-3|+(n+w)
w
=四,则m+wn的值为( )
(1997·北京)如果实数x,y满足丨x-1丨+(x+y)
2
=0,那么xy的值等于( )
(2007·昌平区一模)已知:|a-2|+(b+1)
2
=0,则ab的值为( )
若|x-2|+(y-3)
2
=0,则xy的值为( )