试题
题目:
(2011·江西模拟)如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有奇数所在区域的概率为P(奇数),则P(奇数)等于( )
A.
1
2
B.
3
5
C.
2
5
D.
2
3
答案
B
解:转动转盘一次,共有5种可能的结果,其中是奇数的有1,3,5占三种,
所以P(奇数)=
3
5
.
故选B.
考点梳理
考点
分析
点评
专题
几何概率.
先得到转动转盘一次,共有5种可能的结果,再找出奇数的有1,3,5占三种,利用概率的概念求解即可.
本题考查了概率的概念:某事件的概率等于这个事件出现的结果数除以所有等可能出现的结果数.
计算题.
找相似题
(2013·玉溪)如图,在一块菱形菜地ABCD中,对角线AC与BD相交于点O,若在菱形菜地内均匀地撒上种子,则种子落在阴影部分的概率是( )
(2013·恩施州)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )
(2009·济宁)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是( )
(2008·宁德)向如图所示的盘中随机抛掷一枚骰子,落在阴影区域的概率(盘底被等分成12份,不考虑骰子落在线上情形)是( )
(2013·绍兴模拟)将正方形ABCD的各边三等分(如图所示),连接各分点.现在正方形ABCD内随机取一点,则这点落在阴影部分的概率是( )