试题
题目:
(2008·延庆县二模)如图所示,边长为2的等边三角形OBA的顶点A在x轴的正半轴上,B点位于第一象限.
将△OAB绕点O顺时针旋转30°后,得到△OB′A′,点A′恰好落在双曲线y=
k
x
(k≠0)上.
(1)在图中画出△OB′A′;
(2)求双曲线y=
k
x
(k≠0)的解析式;
(3)等边三角形OB′A′绕着点O继续按顺时针方向旋转
30
30
度后,A′点再次落在双曲线上?( 直接将答案填写在横线上即可,不需要说明理由 )
答案
30
解:(1)画图如图所示;
(2)设A′B′与x轴交于点M,
由题意可知:OA=2,∠MOA′=30°
∴AM=1,
由勾股定理得:OM=
3
,
∴A′点的坐标为(
3
,-1),
∵A′恰好落在双曲线y=
k
x
(k≠0)上,
∴k=-
3
∴双曲线的解析式为:y=-
3
x
;
(3)30.
考点梳理
考点
分析
点评
专题
反比例函数综合题.
(1)旋转中心为O点,旋转角为30°,旋转方向为顺时针,由此画出图形;
(2)根据三角形的轴对称性及所画图形,由勾股定理求OM,MA′,确定A′的坐标,可求双曲线解析式;
(3)双曲线y=-
3
x
关于直线y=-x轴对称,可求A′(
3
,-1)点关于直线y=-x的轴对称点,再判断这个点是否在双曲线上.
本题考查了反比例函数的综合运用,旋转的性质.关键是通过坐标系里的图形旋转,特殊三角形的性质,求点的坐标,确定双曲线的解析式.
计算题.
找相似题
(2013·乐山)如图,已知第一象限内的点A在反比例函数y=
2
x
的图象上,第二象限内的点B在反比例函数y=
k
x
的图象上,且OA⊥OB,cosA=
3
3
,则k的值为( )
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·随州)如图,直线l与反比例函数y=
2
x
的图象在第一象限内交于A,B两点,交x轴于点C,若AB:BC=(m-1):1(m>1),则△OAB的面积(用m表示)为( )