试题

题目:
青果学院(2007·济南)已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为(-
3
,0),AC的延长线与⊙B的切线OD交于点D.
(1)求OC的长和∠CAO的度数;
(2)求过D点的反比例函数的表达式.
答案
青果学院解:(1)∵∠AOC=90°,
∴AC是⊙B的直径.
∴AC=2.
又∵点A的坐标为(-
3
,0),
∴OA=
3

OC=
AC2-OA2
=
22-(
3
)
2
=1

∴sin∠CAO=
OC
AC
=
1
2

∴∠CAO=30°;

(2)如图,连接OB,过点D作DE⊥x轴于点E,
∵OD为⊙B的切线,
∴OB⊥OD.
∴∠BOD=90°.
∵AB=OB,
∴∠AOB=∠OAB=30°.
∴∠AOD=∠AOB+∠BOD=30°+90°=120°.
在△AOD中,∠ODA=180°-120°-30°=30°=∠OAD.
∴OD=OA=
3

在Rt△DOE中,∠DOE=180°-120°=60°,
∴OE=OD·cos60°=
1
2
OD=
3
2
,ED=OD·sin60°=
3
2

∴点D的坐标为(
3
2
3
2
)

设过D点的反比例函数的表达式为y=
k
x

k=
3
2
×
3
2
=
3
3
4

y=
3
3
4x

青果学院解:(1)∵∠AOC=90°,
∴AC是⊙B的直径.
∴AC=2.
又∵点A的坐标为(-
3
,0),
∴OA=
3

OC=
AC2-OA2
=
22-(
3
)
2
=1

∴sin∠CAO=
OC
AC
=
1
2

∴∠CAO=30°;

(2)如图,连接OB,过点D作DE⊥x轴于点E,
∵OD为⊙B的切线,
∴OB⊥OD.
∴∠BOD=90°.
∵AB=OB,
∴∠AOB=∠OAB=30°.
∴∠AOD=∠AOB+∠BOD=30°+90°=120°.
在△AOD中,∠ODA=180°-120°-30°=30°=∠OAD.
∴OD=OA=
3

在Rt△DOE中,∠DOE=180°-120°=60°,
∴OE=OD·cos60°=
1
2
OD=
3
2
,ED=OD·sin60°=
3
2

∴点D的坐标为(
3
2
3
2
)

设过D点的反比例函数的表达式为y=
k
x

k=
3
2
×
3
2
=
3
3
4

y=
3
3
4x
考点梳理
反比例函数综合题.
(1)在直角三角形ACO中,根据已知条件可以求得OA,AC的长,再根据勾股定理求得OC的长,根据锐角三角函数的概念求得∠CAO的度数;
(2)要求反比例函数的表达式,需要求得点D的坐标.作DE⊥x轴于点E,根据对顶角相等和弦切角定理可以求得∠DOE=60°.所以只需再求得OD的长,根据三角形的外角的性质可以求得∠ADO=30°.则OD=OA.从而求得OE,DE的长,再根据点D的坐标求得反比例函数的表达式.
此题主要是运用了30度的直角三角形的性质、切线的性质和等腰三角形的判定和性质,综合性较强,同学们要重点掌握.
综合题;压轴题.
找相似题