试题
题目:
如图在等腰Rt△OBA和Rt△BCD中,∠OBA=∠BCD=90°,点A和点C都在双曲线y=
4
x
(k>0)上,求点D的坐标.
答案
解:过C点作CE⊥BD于E,如图,
∵△OBA为等腰直角三角形,∠OBA=90°,
∴AB=OB,
设A(a,a),
∴a·a=4,
∴a=2,或a=-2(舍去),即OB=2,
又∵△CBD为等腰直角三角形,∠BCD=90°,
∴CE=BE=DE,
设CE=b,则OE=b+2,OD=2+2b,
∴C点坐标为(b+2,b),
∴(b+2)·b=4,即b
2
+2b+1=5,
∴(b+1)
2
=5,
解得b=
5
-1,或b=-
5
-1(舍去),
∴OD=2(
5
-1)+2=2
5
,
∴点D的坐标为(2
5
,0).
解:过C点作CE⊥BD于E,如图,
∵△OBA为等腰直角三角形,∠OBA=90°,
∴AB=OB,
设A(a,a),
∴a·a=4,
∴a=2,或a=-2(舍去),即OB=2,
又∵△CBD为等腰直角三角形,∠BCD=90°,
∴CE=BE=DE,
设CE=b,则OE=b+2,OD=2+2b,
∴C点坐标为(b+2,b),
∴(b+2)·b=4,即b
2
+2b+1=5,
∴(b+1)
2
=5,
解得b=
5
-1,或b=-
5
-1(舍去),
∴OD=2(
5
-1)+2=2
5
,
∴点D的坐标为(2
5
,0).
考点梳理
考点
分析
点评
反比例函数综合题.
由△OAB为等腰直角三角形,设AB=OB=a,确定A点坐标,代入双曲线解析式求a的值,过C点作CE⊥BD于E,由△CBD为等腰直角三角形,得CE=BE=DE,设CE=b,用表示C点坐标,代入双曲线解析式求b,根据线段关系求D点坐标.
本题考查了反比例函数的综合运用.关键是根据特殊三角形设点的坐标,根据双曲线解析式求点的坐标,根据线段长求点的坐标.
找相似题
(2013·乐山)如图,已知第一象限内的点A在反比例函数y=
2
x
的图象上,第二象限内的点B在反比例函数y=
k
x
的图象上,且OA⊥OB,cosA=
3
3
,则k的值为( )
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·随州)如图,直线l与反比例函数y=
2
x
的图象在第一象限内交于A,B两点,交x轴于点C,若AB:BC=(m-1):1(m>1),则△OAB的面积(用m表示)为( )