试题

题目:
青果学院(2013·高港区二模)矩形ABCD中,AB=4,AD=3,以AB为直径在矩形内作半圆.DE切⊙O于点E(如图),则tan∠CDF的值为(  )



答案
B
青果学院解:如图,设FC=x,AB的中点为O,连接DO、OE.
∵AD、DE都是⊙O的切线,
∴DA=DE=3.
又∵EF、FB都是⊙O的切线,
∴EF=FB=3-x.
∴在直角△DCF中,由勾股定理得,(6-x)2+x2=42
解得,x=
5
3

则tan∠CDF=
FC
DC
=
5
3
4
=
5
12

故选B.
考点梳理
切线长定理;勾股定理;锐角三角函数的定义.
设FC=x,AB的中点为O,连接DO、OE.由于AD、DE都是⊙O的切线,由切线长定理可知DA=DE=3.同理EF=FB=x,则在直角△DCF中,由勾股定理即可求得CF的值.最后根据正切三角函数的定义来求tan∠CDF的值.
此题主要考查的是切线长定理以及锐角三角函数的定义.切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.
找相似题