试题

题目:
青果学院如图,AB∥CD
(1)分别探讨如图两个图形中∠APC与∠A、∠C的关系;
(2)请你从所得到的关系中任选一个加以说明.
图(1)的关系是
∠APC=∠A+∠C,
∠APC=∠A+∠C,
;图(2)的关系是
∠C=∠A+∠APC;
∠C=∠A+∠APC;

证明:
图(1):∠APC=∠A+∠C,
过点P作PE∥AB,
∵AB∥CD,
∴AB∥CD∥PE,
∴∠1=∠A,∠2=∠C,
∴∠APC=∠1+∠2=∠A+∠C;
图(2):∠C=∠APC+∠A,
∵AB∥CD,
∴∠1=∠C,
∵∠1=∠A+∠APC,
∴∠C=∠A+∠APC.
图(1):∠APC=∠A+∠C,
过点P作PE∥AB,
∵AB∥CD,
∴AB∥CD∥PE,
∴∠1=∠A,∠2=∠C,
∴∠APC=∠1+∠2=∠A+∠C;
图(2):∠C=∠APC+∠A,
∵AB∥CD,
∴∠1=∠C,
∵∠1=∠A+∠APC,
∴∠C=∠A+∠APC.

答案
∠APC=∠A+∠C,

∠C=∠A+∠APC;

图(1):∠APC=∠A+∠C,
过点P作PE∥AB,
∵AB∥CD,
∴AB∥CD∥PE,
∴∠1=∠A,∠2=∠C,
∴∠APC=∠1+∠2=∠A+∠C;
图(2):∠C=∠APC+∠A,
∵AB∥CD,
∴∠1=∠C,
∵∠1=∠A+∠APC,
∴∠C=∠A+∠APC.

青果学院解:(1)如图(1):∠APC=∠A+∠C,
如图(2):∠C=∠A+∠APC;

(2)图(1):∠APC=∠A+∠C,
过点P作PE∥AB,
∵AB∥CD,
∴AB∥CD∥PE,
∴∠1=∠A,∠2=∠C,
∴∠APC=∠1+∠2=∠A+∠C;
图(2):∠C=∠APC+∠A,
∵AB∥CD,
∴∠1=∠C,
∵∠1=∠A+∠APC,
∴∠C=∠A+∠APC.
考点梳理
平行线的性质.
图(1)首先过点P作PE∥AB,由AB∥CD,即可得AB∥PE∥CD,然后根据两直线平行,内错角相等,即可求得答案;
图(2)由AB∥CD,根据两直线平行,同位角相等,即可求得∠1=∠C,又由三角形外角的性质,即可求得答案;
此题考查了平行线的性质与三角形外角的性质.此题难度不大,解题的关键是注意掌握两直线平行,同位角相等;两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用,注意辅助线的作法.
探究型.
找相似题