试题
题目:
如图,已知直线AB,E是AB上的点,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.
答案
解:∠B=∠C.
∵AD∥BC,
∴∠EAD=∠B,∠DAC=∠C,
∵AD平分∠EAC,
∴∠EAD=∠DAC,
∴∠B=∠C.
解:∠B=∠C.
∵AD∥BC,
∴∠EAD=∠B,∠DAC=∠C,
∵AD平分∠EAC,
∴∠EAD=∠DAC,
∴∠B=∠C.
考点梳理
考点
分析
点评
专题
平行线的性质;角平分线的定义.
由AD∥BC,可得∠EAD=∠B,∠DAC=∠C,根据角平分线的定义,证得∠EAD=∠DAC,等量代换可得∠B与∠C的大小关系.
本题考查的是平行线的性质以及角平分线的性质,比较简单.
探究型.
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·黔东南州)如图,已知a∥b,∠1=40°,则∠2=( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·晋江市)如图,已知直线a∥b,直线c与a、b分别交点于A、B,∠1=50°,则∠2=( )